Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2160, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061529

RESUMO

TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive. Here we show that while Trim-Away activation results in ubiquitination of both ligase and substrate, ligase ubiquitination is not required for substrate degradation. N-terminal TRIM21 RING ubiquitination by the E2 Ube2W can be inhibited by N-terminal acetylation, but this doesn't prevent substrate ubiquitination nor degradation. Instead, uncoupling ligase and substrate degradation prevents ligase recycling and extends functional persistence in cells. Further, Trim-Away degrades substrates irrespective of whether they contain lysines or are N-terminally acetylated, which may explain the ability of TRIM21 to counteract fast-evolving pathogens and degrade diverse substrates.


Assuntos
Lisina , Ubiquitina-Proteína Ligases , Animais , Lisina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Mamíferos/metabolismo
2.
Life (Basel) ; 13(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36836628

RESUMO

The standard approach to exploring prebiotic chemistry is to use a small number of highly purified reactants and to attempt to optimize the conditions required to produce a particular end product. However, purified reactants do not exist in nature. We have previously proposed that what drives prebiotic evolution are complex chemical ecologies. Therefore, we have begun to explore what happens if one substitutes "sea water", with its complex mix of minerals and salts, for distilled water in the classic Miller experiment. We have also adapted the apparatus to permit it to be regassed at regular intervals so as to maintain a relatively constant supply of methane, hydrogen, and ammonia. The "sea water" used in the experiments was created from Mediterranean Sea salt with the addition of calcium phosphate and magnesium sulfate. Tests included several types of mass spectrometry, an ATP-monitoring device capable of measuring femtomoles of ATP, and a high-sensitivity cAMP enzyme-linked immunoadsorption assay. As expected, amino acids appeared within a few days of the start of the experiment and accumulated thereafter. Sugars, including glucose and ribose, followed as did long-chain fatty acids (up to C20). At three-to-five weeks after starting the experiment, ATP was repeatedly detected. Thus, we have shown that it is possible to produce a "one-pot synthesis" of most of the key chemical prerequisites for living systems within weeks by mimicking more closely the complexity of real-world chemical ecologies.

3.
Nat Commun ; 12(1): 6463, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753921

RESUMO

Diet composition, calories, and fasting times contribute to the maintenance of health. However, the impact of very low-calorie intake (VLCI) achieved with either standard laboratory chow (SD) or a plant-based fasting mimicking diet (FMD) is not fully understood. Here, using middle-aged male mice we show that 5 months of short 4:10 VLCI cycles lead to decreases in both fat and lean mass, accompanied by improved physical performance and glucoregulation, and greater metabolic flexibility independent of diet composition. A long-lasting metabolomic reprograming in serum and liver is observed in mice on VLCI cycles with SD, but not FMD. Further, when challenged with an obesogenic diet, cycles of VLCI do not prevent diet-induced obesity nor do they elicit a long-lasting metabolic memory, despite achieving modest metabolic flexibility. Our results highlight the importance of diet composition in mediating the metabolic benefits of short cycles of VLCI.


Assuntos
Ingestão de Energia/fisiologia , Obesidade/metabolismo , Animais , Restrição Calórica , Masculino , Camundongos , Obesidade/genética
4.
EMBO J ; 40(17): e108588, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323299

RESUMO

The humoral immune response to SARS-CoV-2 results in antibodies against spike (S) and nucleoprotein (N). However, whilst there are widely available neutralization assays for S antibodies, there is no assay for N-antibody activity. Here, we present a simple in vitro method called EDNA (electroporated-antibody-dependent neutralization assay) that provides a quantitative measure of N-antibody activity in unpurified serum from SARS-CoV-2 convalescents. We show that N antibodies neutralize SARS-CoV-2 intracellularly and cell-autonomously but require the cytosolic Fc receptor TRIM21. Using EDNA, we show that low N-antibody titres can be neutralizing, whilst some convalescents possess serum with high titres but weak activity. N-antibody and N-specific T-cell activity correlates within individuals, suggesting N antibodies may protect against SARS-CoV-2 by promoting antigen presentation. This work highlights the potential benefits of N-based vaccines and provides an in vitro assay to allow the antibodies they induce to be tested.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19/sangue , SARS-CoV-2/isolamento & purificação , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/virologia , Humanos , Nucleoproteínas/sangue , Nucleoproteínas/imunologia , SARS-CoV-2/patogenicidade
5.
Int J Mol Sci ; 18(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207492

RESUMO

The causes of insulin resistance are not well-understood in either type 1 or type 2 diabetes. Insulin (INS) is known to undergo rapid non-enzymatic covalent conjugation to glucose or other sugars (glycation). Because the insulin receptor (IR) has INS-like regions associated with both glucose and INS binding, we hypothesize that hyperglycemic conditions may rapidly glycate the IR, chronically interfering with INS binding. IR peptides were synthesized spanning IR- associated INS-binding regions. Glycation rates of peptides under hyperglycemic conditions were followed over six days using matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. INS conjugated to horse-radish peroxidase was used to determine INS binding to IR peptides in glycated and non-glycated forms. Several IR peptides were glycated up to 14% within days of exposure to 20-60 mM glucose. Rates of IR-peptide glycation were comparable to those of insulin. Glycation of four IR peptides significantly inhibits INS binding to them. Glycation of intact IR also decreases INS binding by about a third, although it was not possible to confirm the glycation sites on the intact IR. Glycation of the IR may therefore provide a mechanism by which INS resistance develops in diabetes. Demonstration of glycation of intact IR in vivo is needed.


Assuntos
Antígenos CD/química , Antígenos CD/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Sítios de Ligação , Glicosilação , Humanos , Técnicas In Vitro , Insulina/química , Resistência à Insulina , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Vis Exp ; (123)2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28518087

RESUMO

There are many well-developed methods for purifying and studying single proteins and peptides. However, most cellular functions are carried out by networks of interacting protein complexes, which are often difficult to investigate because their binding is non-covalent and easily perturbed by purification techniques. This work describes a method of stabilizing and separating native protein complexes from unmodified tissue using two-dimensional polyacrylamide gel electrophoresis. Tissue lysate is loaded onto a non-denaturing blue-native polyacrylamide gel, then an electric current is applied until the protein migrates a short distance into the gel. The gel strip containing the migrated protein is then excised and incubated with the amine-reactive cross-linking reagent dithiobis(succinimidyl propionate), which covalently stabilizes protein complexes. The gel strip containing cross-linked complexes is then cast into a sodium dodecyl sulfate polyacrylamide gel, and the complexes are separated completely. The method relies on techniques and materials familiar to most molecular biologists, meaning it is inexpensive and easy to learn. While it is limited in its ability to adequately separate extremely large complexes, and has not been universally successful, the method was able to capture a wide variety of well-studied complexes, and is likely applicable to many systems of interest.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Complexos Multiproteicos/análise , Complexos Multiproteicos/isolamento & purificação , Succinimidas/química , Animais , Encéfalo/metabolismo , Reagentes de Ligações Cruzadas/química , Complexos Multiproteicos/química , Ratos
7.
J Mol Recognit ; 29(7): 296-302, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26749062

RESUMO

The intracellular recycling of ascorbic acid from dehydroascorbic acid by the glutathione-glutathione reductase system has been well-characterized. We propose that extracellular recycling of ascorbic acid is performed in a similar manner by cysteine-rich, glutathione-like regions of the first and second extracellular loops of some aminergic receptors including adrenergic, histaminergic, and dopaminergic receptors. Previous research in our laboratory demonstrated that ascorbic acid binds to these receptors at a site on their first or second extracellular loops, significantly enhancing ligand activity, and apparently recycling hundreds of times their own concentration of ascorbate in an enzymatic fashion. In this study, we have synthesized 25 peptides from the first and second extracellular loops of aminergic and insulin receptors and compared them directly to glutathione for their ability to prevent the oxidation of ascorbate and to regenerate ascorbate from dehydroascorbic acid. Peptide sequences that mimic glutathione in containing a cysteine and a glutamic acid-like amino acid also mimic glutathione activity in effects and in kinetics. Some (but not all) peptide sequences that contain one or more methionines instead of cysteine can significantly retard the oxidation of ascorbic acid but do not recycle it from dehydroascorbate into ascorbate. Peptides lacking both cysteines and methionines uniformly failed to alter significantly ascorbate or dehydroascorbate oxidation or reduction. We believe that this is the first proof that receptors may carry out both ligand binding and enzymatic activity extracellularly. Our results suggest the existence of a previously unknown extracellular system for recycling ascorbate. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Ácido Ascórbico/metabolismo , Ácido Desidroascórbico/metabolismo , Glutationa/metabolismo , Peptídeos/síntese química , Receptores Acoplados a Proteínas G/química , Sítios de Ligação , Cisteína/química , Glutationa/química , Cinética , Metionina/química , Modelos Moleculares , Oxirredução , Peptídeos/química , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...